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The problem of a liquid jet moving at hypersonic speed into a gas is considered in a 
frame of reference in which the tip of the jet is a t  rest. The liquid jet flow is assumed 
to be inviscid, irrotational, incompressible and two-dimensional although an approxi- 
mate extension to the axially symmetric case is developed. The air flow in the hyper- 
sonic shock layer is analysed using the modified Newtonian theory. The condition of 
continuity of pressure at the gas-liquid interface then allows a solution to the potential 
problem in the liquid to be found by transforming to the hodograph plane. The result- 
ing jet shape is presented graphically in terms of the relevant parameters. 

The application of the method to penetration problems is also discussed and 
comparisons made with experimental results and ‘exact ’ solutions. 

1. Introduction 
In  recent years there has been an increasing use of high-speed water jets in the 

cutting of coal, particularly in the U.S.S.R., U.S.A. and Poland. This method of 
cutting the rock is free from the hazard of methane ignition and consequently is a 
subject in which there is a great deal of interest. 

For soft rocks, such as coal, with low compressive strengths, quite large jets a t  a 
pressure below about 300 atmospheres were sufficient to achieve the cutting. Such 
jets issued into the atmosphere with a Mach number, based on the ratio of jet speed 
to ambient-gas sound speed, of less than unity. However, much higher pressures 
would be required for the cutting of harder rocks, resulting in free-stream Mach 
numbers for the jets of 3 or more. Leach & Walker (1966) carried out experiments with 
such jets and examined their penetration into several types of rock. 

This physical situation, apart from the rock penetration, is typified by a liquid 
jet moving at hypersonic speed into a gas at rest and such a model will be analysed in 
this paper in a frame of reference in which the tip of the jet is stationary. 

A similar situation arises in a. type of re-entry problem examined experimentally 
by Finlay (1966), in which a jet of gas was emitted from the blunt nose of a re-entry 
vehicle to reduce the heat transfer from the shock layer to the body. In  this case the 
speed of the jet was such that reattachment to the body took place in a region where 
the pressure had dropped quite markedly from its stagnation value. It was in this 
context that the interaction of an incompressible jet opposing a hypersonic stream 
was analysed by Lam (1959)t and the model developed was almost identical to the 
approach used in this paper. 

The penetration of solids by high-speed liquid jets, or solids, also has certain simi- 

t The author is indebted to Professor N. C. Freeman for this observation. 
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larities with the problem just outlined. Pack & Evans (1951) established the notion 
of a hydrodynamic analogy as an acceptable simplification for such phenomena when 
the dynamic pressure generated by the jet greatly exceeded the yield strength of the 
material. They were concerned with the penetration of metal by explosively generated 
liquid-metal Munroe jets. This work has been extended by Tate (1967,1969) to examine 
the deceleration of long metal rods after striking a target. The theoretical aspects of 
these studies were limited to one-dimensional considerations. Extensive numerical 
calculations of the flow producing the Munroe jet and the penetration of the jet into 
a target have been carried out by Harlow & Pracht (1966) using the particle-in-cell 
method. Their comprehensive results show the shape of the penetrating jet to be of 
the same general form as t,hat produced in Finlay’s experiments. That is to say, the 
jet is ‘mushroom shaped’ near the nose, presumably owing to the dominance in these 
problems of t’he dynamic rather than the viscous effects. 

The primary problem considered in the present paper is that of a two-dimensional 
liquid jet in a hypersonic stream of gas. The relevance of this approach to more general 
situations will be discussed. For example, a simple momentum-integral approach 
allows certain features of the axially symmetric jet to be determined with some 
confidence. It is also argued that the results obtained for the hypersonic jet are of 
value in forming the basis of a solution to the penetration problem. 

For simplicity it will be assumed that the liquid comprising the jet is incompressible, 
inviscid and irrotational. As there are no rigid boundaries in the problem, the main 
effect of viscosity will be confined to the mixing region between the liquid in the jet 
and the gas through which the jet is travelling. Across the mixing layer the pressure 
is approximately constant, so that, provided that a condition of continuity of pressure 
across the gas-liquid interface is enforced, no serious errors should arise from the 
neglect of viscosity and the free shear layer need not be considered in detail. 

The flow is taken to  be steady and the velocity profile across the jet at  large distances 
from its nose is uniform. In  such a jet the flow will therefore remain irrotational. 

In  t,he hypersonic flow field, use is made of the ‘modified’ Newtonian theory. The 
value of this approach for determining the pressure distribution on the body surface is 
well recognized, although it must be accepted that the so-called theory is empirical. 

2. Method of solution 
The type of flow under consideration is shown diagrammatically in figure 1. The 

mushroom-shaped region occupied by the liquid jet is of the form determined experi- 
mentally by Finlay, and as has been pointed out, it is also of the same general shape as 
that indicated by the numerical results of Harlow & Pracht for the liquid-jet penetra- 
tion calculation. 

The present problem essentially reduces to the determination of the free surfaces 
which separate the various regions. The bow shock S (figure 1) separates the uniform 
stream from bhe hypersonic shock layer, which, in turn, is bounded by the gas- 
liquid interface, which effectively acts as a body. The other free boundary of the 
liquid jet is assumed to be adjacent to a region of uniform pressure. 

First of all, considering the hypersonic shock layer, the only analytical method 
for this region which is uniformly valid in some limit is that typified by the.analysis 
of Freeman (1 956). A considerable simplifica$ion which resiiltjs is t,he fact that, the 
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FIGURE 1. Diagrammatic repzwsentation of the Bow 
field showing the co-ordinate axes. 

shock and body, the gas-liquid interface in this instance, have the same shape to 
first order. However, there is a difficulty associated with the first approximation 
in that it predicts an unrealistic fall to zero of the surface pressure on most bluff 
bodies. Clearly the flow in the liquid jet is essentially determined by this pressure 
distribution. Hence, in the present analysis, it seems more appropriate to use the 
‘modified’ Newtonian pressure distribution proposed by Lees (1  955), which shows 
excellent agreement both with experimental results and with ‘exact ’ calculations for 
hypersonic flow past bluff convex bodies. The reasons for its success are well set out 
by Hayes & Probstein (1966, p. 401). 

Consequently, if @ is the inclination of the body surface to the mainstream, the 
surface pressure distribution is taken to be 

PIP, U% = sin2 @, (1)  

where p and U denote density and free-stream velocity respectively and the suffix 
G refers to the gas. 

In the body of the liquid jet the flow is assumed to be inviscid, incompressible and 
irrotational, so that 

VZ@L = 0, (2) 

where ~L is a stream function for the liquid and is defined by 

q cos 6 = a ~ L / a y ,  p sin 6 = - (3) 

where x and y are as shown in figure 1, q is the speed of the liquid and 6 the inclination 
of the velocity to the x axis. 
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F 0 G 
FIGURE 2. The jet flow field in the hodograph plane. 

At the jet surface there is no component of velocity normal to the surface and the 
tangential component is determined by Bernoulli's equation applied along the stream- 
lines forming the surface. 

Along the surface denoted in figure 1 by OA, the speed q is given by 

since at the nose on the plane of symmetry there is a stagnation point; the suffix L 
refers to the liquid properties. As the pressure P is continuous acrosa the gas-liquid 
interface P in (4) is given by expression (l), in which @ = 8 for 0 < 8 f in. Also, by 
using Bernoulli's equation along the plane of symmetry it can be aeen that 

4PL a = Po uz,. ( 5 )  

Q = UL, (6) 

Along the surface BC (figure l) ,  the speed is given by 

since this surface is assumed to be at a constant pressure. 
The boundary conditions (4) and ( 6 )  indicate that (2) could be most conveniently 

solved in the velocity (q, 6) plane. So, making use of the hodogreph transformation, 
the problem is illustrated in figure 2 ,  where it is necessary to find a stream function 
$' satisfying 

The boundary conditions to be satisfied are $, = 0 on DOA of figure 1, that is, using 
( I ) ,  (4) and (51% 

on 0 f q f U', 6 = n ,  (7a) 
(7 b )  

$ L = U L h  on p = & ,  0 < 8 < n .  (8) 

$L=O(on q = uLCOse,  o < 8 G in. 

Also, on the surface BC, if 2h is the thickness of the jet as x+m, 

The problem can now be solved by looking for a complex potential w to represent 
the flow in the region shown in figure 2, where U, h units of fluid are introduced a t  
the point F and removed at  G .  From ( 7 b )  it can be seen that the curve OG is part 
of a circle with centre at  q = iUL, 8 = 0. 

Bearing this in mind it is now posaible to map this region into a half-plane through 
t'he following transformations. First, inverting with respect to the point G transforms 
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FIQURE 3. Tho shape of a jet moving into a gas. 

the region of interest into a semi-infinite strip. This, after rotation, a shift of origin 
and suitable scaling, can be ‘opened out ’ using a standard transformation so that the 
original region is mapped onto the upper half of, say, the [plane. The complex potential 
in the [ plane is then easily written down and, using t.he transformattions outlined 
above, is given in terms of q and 6 by the expression 

w = 2UL h In { 1 + cosh [ 2niQ/( Q - 1 ) I } ,  (9) 

where Q = qeie. (10) 

dz = (eie/q)dw. (11) 

In  order to  transform back to the physical co-ordinates x and y ,  use is made of the 
rela tion 

Referring to figure 1, to obtain the jet surface shape corresponding to OA, (11) is 
used together with (7 b) .  Hence a parametric representation of the curve OA is given by 

nx = hln[+(l +cosha)], I 

Similarly the curve BC can be found by substituting q = U, in (1  1)  to obtain 

The integrals can be evaluated and the curve BC located in the x, y plane by integrating 
(11) from q = 0 to q = U, along the line 8 = in. It is useful to find the shape of the 
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free surface given by (12) near the nose and also determine the asymptotic structure 
of the jet. For small values of a, (12) gives 

y2 = 477h~ 

for the shape of the jet, and hence the radius of curvature of the jet at  the nose is 
277h. For large values of x the shape of the leading surface of the jet is given by 

y = 2hln(nz/h). 

The shape of the jet given by (12) is shown in figure 3. 

3. The axially symmetric problem 
Although the method developed is not suitable for dealing with the axially sym- 

metric case it is of interest to inquire whether the two-dimensional model might 
throw some light on the axially symmetric problem with regard to  certain overall 
characteristics. While it must be accepted that the shape of the axially symmetric 
jet cannot be determined with any confidence by reference to the two-dimensional 
theory, it might be possible to give an estimate for the radius of curvature at  the 
nose of such a jet. This would of course be of some value as it would give information 
about the region of most importance, from the practical point of view, of the axially 
symmetric jet. In order to test the viability of some overall force balance approach 
it would be of value to ccmpare the result from such a model with the result already 
obtained for the two-dimensional case. 

Considering the equilibrium of the fluid meking up the jet by equating the pressure 
forces to the rate of change of momentum of the fluid gives rise to the equation 

where the pressure P is given by (1) .  Clearly the left-hand side of this equation depends 
on the shape of the free surface of the jet. However, since it seems reasonable to 
suppose that the main contribution to this integral comes from the region near the 
nose, the element of length ds may be taken to be that associated with a circular 
cylinder of radius R,, say. The integral on the left-hand side of (14) can then be 
evaluated and, using ( 5 ) )  R, can be found in terms of h, i.e. 

R, = 6h. 

This should be compared with the result obtained from the two-dimensional analysis 
for the radius of curvature of the jet at  the nose, namely 2nh. This remarkably good 
agreement shows that the approach may be of value in the axially symmetric case 
and furthermore gives some indication of the confidence with which the result may 
be viewed. 

If the radius of the undisturbed liquid jet is denoted by a, and R, again denotes 
the radius of curvature of, in this case, the spherical cap, the equation corresponding 
to (14) is 

pc UZ, R 1 6  2n( 1 - cos2 0) cos 0 sin d<D = 2nu2pL UE, 

R, = 2 % ~ .  
which yields the result 
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4. The penetration problem 
With reference to the penetration problem mentioned earlier, the liquid jet in this 

case moves into a region of plastic flow associated with the solid. Now, it is well 
established (see, for example, Rae 1970) that a solid, when subjected to pressures 
which greatly exceed the yield strength of the material, may be treated as an inviscid 
compressible fluid and indeed, if the pressures are sufficiently high, the equation of 
state approximates thtit of a perfect gas with a ratio of specific heats of 1.5. Further- 
more, the liquid in the jet is ultimately deflected from its original direction through 
an angle of m radians. 

This means that the pressure distribution on the leading surface should be of the 
general form indicated by (1) and the analysis carries through. The fact that in the 
analysis there is a mixture of incompressible and hypersonic compressible A ow does 
mean that the Mach numbers are respectively much less than and much greater than 
unity in the two regimes. In  other words, the material properties of the jet and the 
solid are quite different. 

As the pressure drops from its very high stagnation value, the simple-gas approxi- 
mation for the solid must fail and the effect of material strength becomes important. 
In  practice this is shown by the solidification of the target material, and possibly 
the jet material in a solid-solid interaction, to form a lip near the rim of the impact 
crater. The experimental work of Christman & Gehring (1966) shows this quite 
clearly. 

For cases when the Mach number is not very high, the method should still be 
useful since the pressure must drop from some stagnation value at the nose to a value 
which is effectively zero when B = 0, in which case ( 1 )  can be regarded as a first 
approximation and the resulting solution can then form the basis of some iterative 
procedure. Hence the initial estimate for the shape of the jet is the same as the shape 
for the hypersonic flow case shown in figure 3. Furthermore, the extension of the 
two-dimensional method to the axially symmetric case should carry over. 

5. Comparisons with ‘exact ’ solutions and experiment 
An examination of the results of the calculations of Harlow & Pracht for the 

two-dimensional penetration jet allows one to estimate roughly the value of the radius 
of curvature of the jet a t  the nose. Concentrating on the result when the jet has 
penetrated the solid to a depth of about 3.5 undisturbed liquid jet widths, a rcugh 
measurement on the figures presented gives a radius of curvature a t  the nose of about 
5h. This should be compared with the value 2nh obtained for R, from the present theory. 
However, this quantity was extremely difficult to measure accurately so a comparison 
was also made of the shortest distance from the line x = 0 to the free surface BC (see 
figure 1). From the numerical results this distance made non-dimensional by the 
undisturbed jet width quickly assumed a steady value of about unity compared with 
1.07 from the present analysis. This is very reasonable agreement under the circum- 
stances and supports the assumption of steady flow. 

Comparison of the theoretical results with experiments presents certain difficulties. 
For the case of a high-speed liquid jet travelling through gas it is observed that as the 
jet issues from the nozzle it appears to be broken up into a fine spray which prevents 
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any clear picture of the flow being formed. It was for this reason that Leach & Walker 
decided that it would be more instructive to measure the pressure distribution on a 
flat plate perpendicular to the direction of the jet. The results indicated that the 
pressure was effectively zero a t  a distance of three jet radii from the axis. The present 
axially symmetric analysis based on a hemispherical leading surface gives a value of 
28 for this factor. 

The early experiments of Pack & Evans, which dealt with the penetration into 
various metals of liquid-metal ‘Munroe ’ jets, do form a basis for a careful comparison. 
In  this case the penetration consisted of two or in some cases three distinct phases. 
The primary penetration of the jet was followed by secondary penetration as the 
hole continued to  expand until the motion begun by the high pressure of the jet had 
been damped out by the resistance to the flow. Finally, behind the jet there was, in 
some cases, a slower moving and wider piece of metal called the plug which was 
capable of increasing the penetration. 

The type of mainly lateral flow associated with the secondary penetration is, of 
course, highly dependent on the strength properties of the metal. Thus, in a metal 
such as lead with a relatively low yield strength this effect may well obscure the 
purely dynamic effects accounted for in the present analysis. This is borne out by the 
observations of Christman & Gehring. For this reason, it seems advisable to compare 
the theoretical results with those experimental results where secondary penetration 
was a small effect. Also, with tin forming the jet material no plug was present. With 
these restrictions, it  was found that in steel targets the jet bored a hole of about four 
to five times its own radius. This result shows reasonable agreement with the factor 
28 obtained from the axially symmetric analysis. 

Most of the experimental workers on the penetration of metals have used spherical 
solid projectiles, so that no useful comparisons can be made with the theory. Even 
the results of Tate (1969) for the impact of long hard metal rods on a relatively soft 
metal target are not compatible with the Mach number restrictions of the present 
theory. The experiments in this case were designed such that the strength of the 
material was a significant factor in the penetration process. 

However, the extensive results of Christman & Gehring for the penetration of 
metal rods of various aspect ratios into large blocks of material do offer suitable 
comparisons. Amongst their results are some dealing with the penetration of steel 
rods with a length-to-diameter ratio of 10: 1 into three different types of material. 
The X-ray pictures were taken during the penetrating process and show the radius of 
the crater near the nose to be about three times the projectile radius. These results are 
particularly important for comparison purposes because they give a clear picture of 
the primary phase of penetration, when, a t  the speeds used, the hydrodynamic analogy 
is valid and the flow is essentially steady in a frame of reference moving with the nose 
of the projectile. The agreement in this case with the present theory is remarkably 
good and again supports the assumption of steady flow. 

As mentioned earlier, jets are used extensively as a cutting tool and in particular 
there is a substantial amount of experimental data on the penetration of various types 
of rock. This situation exhibits certain features which distinguish it from the penetra- 
tion of metal. At relatively low speeds the jet penetrates the rock by a combination 
of fracture and erosion (see, for example, Rollins, Clark & Kalia 1973). However, at  
higher jet speeds, of the order of 5000m/s, Farmer & Attewell (1965) suggested that 
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the situation was more amenable to a hydrodynamic treatment and furthermore an 
approximately steady state would exist. Under these circumstances the present theory 
would be applicable. 

Returning to the findings of Leach & Walker, they showed that the most commonly 
observed damage in various types of rock was a hole with a diameter about five times 
the jet diameter. The depth of the hole was aEected by the interaction of the water 
escaping from the hole with the incident jet. Bearing in mind that some erosim of the 
hole would have taken place, these results were consistent with their pressure findings. 
However, it must be pointed out that the speed of 1000m/s for the jet was not high 
enough for a hydrodynamic analogy to model adequately the penetration. Neverthe- 
less, reasonable agreement is obtained owing to  the pressure being adequately 
predicted. 

6. Conclusions 
The use of the method developed in this paper has been demonstrated for different 

types of physical problems where the main requirement is the determination of the 
shape of the free surface of a high-speed liquid jet. In all cases, the effect of viscosity 
has been ignored on the basis that the form of flow would be dominated by the dynamic 
pressures generated. Any compressibility effects in the liquid have also been ignored 
although at the speeds envisaged there would be a sudden expansion of the jet as it 
left the nozzle. This assumption also imposes some restrictions on the applicability 
of the model to the penetration problem. While the analogy between the plastic flow 
regime and a compressible gas is generally acceptable, the Mach number restrictions 
that this assumption imposes on the materials must be borne in mind. 

The assumption that the flow is steady needs some qualification. For the case of a 
hypersonic liquid jet moving into a gas, this assumption limits the validity of the 
model to a region near the forward part of the jet, a few jet diameters downstream 
of the nozzle. However, this is the region of importance when such jets are used as 
cutting devices. Furthermore, there is some experimental evidence that a steady-state 
hydrodynamic analogy is the appropriate model for penetration prablems. 

For realistic equations of state’for the solid during its deformation, possibly to 
include strength effects in the form of a stiffenedgas, the solution for the penetration 
problem can be regarded only as a first step in some iterative procedure, but here again 
it seems reasonable to regard the flow as steady in the forward part of the jet after 
penetration to a distance of a few jet diameters. The comparison with the ‘exact’ 
cdculations and experiment do vindicate the approximations used in this method. 

The model presented in this paper illustrates the dominant effect of the inertia 
terms in the formation of the jet boundary and provides a particularly simple analytic 
approach to a type of problem hitherto analysed only in terms of large-scale numerical 
treatments. It is fair comment that the hydrocode methods do themselves suffer from 
some serious limitations in that the results are difficult to generalize, functional 
dependences are not apparent and consequently there is a lack of physical insight 
unless very many calculations over a parameter field are obtained. A critical review 
of these methods has been given by Dienes & Welsh (1970). 
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